208 research outputs found

    At the mercy of strategies: the role of motor representations in language understanding

    Get PDF
    Classical cognitive theories hold that word representations in the brain are abstract and amodal, and are independent of the objects\u2019 sensorimotor properties they refer to. An alternative hypothesis emphasizes the importance of bodily processes in cognition: the representation of a concept appears to be crucially dependent upon perceptual-motor processes that relate to it. Thus, understanding action-related words would rely upon the same motor structures that also support the execution of the same actions. In this context, motor simulation represents a key component. Our approach is to draw parallels between the literature on mental rotation and the literature on action verb/sentence processing. Here we will discuss recent studies on mental imagery, mental rotation, and language that clearly demonstrate how motor simulation is neither automatic nor necessary to language understanding. These studies have shown that motor representations can or cannot be activated depending on the type of strategy the participants adopt to perform tasks involv- ing motor phrases. On the one hand, participants may imagine the movement with the body parts used to carry out the actions described by the verbs (i.e., motor strategy); on the other, individuals may solve the task without simulating the corresponding movements (i.e., visual strategy). While it is not surprising that the motor strategy is at work when par- ticipants process action-related verbs, it is however striking that sensorimotor activation has been reported also for imageable concrete words with no motor content, for \u201cnon- words\u201d with regular phonology, for pseudo-verb stimuli, and also for negations. Based on the extant literature, we will argue that implicit motor imagery is not uniquely used when a body-related stimulus is encountered, and that it is not the type of stimulus that automat- ically triggers the motor simulation but the type of strategy. Finally, we will also comment on the view that sensorimotor activations are subjected to a top-down modulation

    Language brain representation in bilinguals with different age of appropriation and proficiency of the second language: A meta-analysis of functional imaging studies

    Get PDF
    Language representation in the bilingual brain is the result of many factors, of which age of appropriation (AoA) and proficiency of the second language (L2) are probably the most studied. Many studies indeed compare early and late bilinguals, although it is not yet clear what the role of the so-called critical period in L2 appropriation is. In this study, we carried out coordinate-based meta-analyses to address this issue and to inspect the role of proficiency in addition to that of AoA. After the preliminary inspection of the early (also very early) and late bilinguals\u2019 language networks, we explored the specific activations associated with each language and compared them within and between the groups. Results confirmed that the L2 language brain representation was wider than that associated with L1. This was observed regardless of AoA, although differences were more relevant in the late bilinguals\u2019 group. In particular, L2 entailed a greater enrollment of the brain areas devoted to the executive functions, and this was also observed in proficient bilinguals. The early bilinguals displayed many activation clusters as well, which also included the areas involved in cognitive control. Interestingly, these regions activated even in L1 of both early and late bilingual groups, although less consistently. Overall, these findings suggest that bilinguals in general are constantly subjected to cognitive effort to monitor and regulate the language use, although early AoA and high proficiency are likely to reduce this

    Understanding Body Language Does Not Require Matching the Body's Egocentric Map to Body Posture: A Brain Activation fMRI Study

    Get PDF
    Body language (BL) is a type of nonverbal communication in which the body communicates the message. We contrasted participants' cognitive processing of body representations or meanings versus body positions. Participants (N\u2009=\u200920) were shown pictures depicting body postures and were instructed to focus on their meaning (BL) or on the position of a body part relative to the position of another part (body structural description [BSD]). We examined activation in brain areas related to the two types of body representation\u2014body schema and BSD\u2014as modulated by the two tasks. We presumed that if understanding BL triggers embodiment of body posture, a matching procedure between the egocentric map coding the position of one's body segments in space and time should occur. We found that BL (vs. BSD) differentially activated the angular gyrus bilaterally, the anterior middle temporal gyrus, the temporal pole, and the right superior temporal gyrus, the inferior frontal gyrus, the superior medial gyrus, and the left superior frontal gyrus. BSD (vs. BL) differentially activated the superior parietal lobule (Area 7A) bilaterally, the posterior inferior temporal gyrus, the middle frontal gyrus, and the left precentral gyrus. Sensorimotor areas were differentially activated by BSD when compared with BL. Inclusive masking showed significant voxels in the superior colliculus and pulvinar, fusiform gyrus, inferior temporal gyrus, superior temporal gyrus, the intraparietal sulcus bilaterally, inferior frontal gyrus bilaterally, and precentral gyrus. These results indicate common brain networks for processing BL and BSD, for which some areas show differentially stronger or weaker processing of one task or the other, with the precuneus and the superior parietal lobule, the intraparietal sulcus, and sensorimotor areas most related to the BSD as activated by the BSD task. In contrast, the parietal operculum, an area related to the body schema, a representation crucial during embodiment of body postures, was not activated for implicit masking or for the differential contrasts

    Framing the ultimatum game: the contribution of simulation

    Get PDF
    It has now become widely accepted that economic decisions are influenced by cognitive and emotional processes. In the present study, we aimed at disentangling the neural mechanisms associated with the way in which the information is formulated, i.e., framing effect, in terms of gain or loss, which influences people\u2019s decisions. Participants played a fMRI version of the Ultimatum Game (UG) where we manipulated bids through two different frames: the expression \u201cI give you\u201d (gain) focusing on money the respondent would receive if she/he agreed with the proponent, and the expression \u201cI take\u201d (loss) focusing on the money that would be removed from the respondent in the event that she/he accepted the offer. Neuroimaging data revealed a frame by response interaction, showing an increase of neural activity in the right rolandic operculum/insular cortex, the anterior cingulate, among other regions, for accepting the frame \u201cI take\u201d vs. rejecting, as compared to accepting the frame \u201cI give you\u201d vs. rejecting. In addition, the left occipito-temporal junction was activated for \u201cI take\u201d vs. \u201cI give you\u201d for offer 5, corresponding to the equal offer made unpleasant by the presence of the frame \u201cI take,\u201d where is the proposer that takes the money. Our data extend the current understanding of the neural substrates of social decision making, by disentangling the structures sensitive to the way in which the information is formulated (i.e., framing effect), in terms of gain or loss

    Multimodal assessment shows a mostly preserved cognitive status in incidentally discovered low grade gliomas: A single institution study

    Get PDF
    Incidentally discovered low-grade gliomas (iLGGs) are poorly reported in the literature. Still less is known about iLGG patients\u2019 neuropsychological profile: It is unclear whether iLGG patients are cognitively proficient, thus further confirming the concept of asymptomatic. From our monoinstitutional cohort of 332 patients operated for LGG from 2000 to 2017 we selected those who underwent a neuropsychological testing (n = 217, from 2008 to 2017), and identified 24 young (mean age 38.5 \ub1 1.06) patients with iLGGs (16 of 24, left hemisphere iLGGs, 8 of 24 right hemisphere iLGGs). The maximum lesions overlap occurred in the left inferior frontal gyrus and in the right anterior cingulate/superior medial frontal gyrus. Patients were cognitively preserved except mild to borderline difficulties in a few of them. The analysis of the equivalent scores (a score laying below or equal to the external nonparametric tolerance limit of adjusted scores corresponding to 0, 1, 2 and 3 are intermediate) highlighted the presence of additional borderline performances. Molecular class correlated with a normal function at visual\u2013spatial intelligence (p = 0.05) and at spatial short-term memory (p = 0.029). Results indicate that at this time of tumor growth, patients\u2019 cognitive abilities are still functional, but are slowly approaching the borderline level

    Cognitive functions in repeated glioma surgery

    Get PDF
    Low-grade gliomas (LGG) are slow-growing brain tumors infiltrating the central nervous system which tend to recur, often with malignant degeneration after primary treatment. Re-operations are not always recommended due to an assumed higher risk of neurological and cognitive deficits. However, this assumption is relatively ungrounded due to a lack of extensive neuropsychological testing. We retrospectively examined a series of 40 patients with recurrent glioma in eloquent areas of the left hemisphere, who all completed comprehensive pre- (T3) and post-surgical (T4) neuropsychological assessments after a second surgery (4-month follow up). The lesions were most frequent in the left insular cortex and the inferior frontal gyrus. Among this series, in 17 patients the cognitive outcomes were compared before the first surgery (T1), 4 months after the first surgery (T2), and at T3 and T4. There was no significant difference either in the number of patients scoring within the normal range between T3 and T4, or in their level of performance. Further addressing the T1\u2013T4 evolution, there was no significant difference in the number of patients scoring within the normal range. As to their level of performance, the only significant change was in phonological fluency. This longitudinal follow-up study showed that repeated glioma surgery is possible without major damage to cognitive functions in the short-term period (4 months) after surgery

    Multisensory mental representation in covid-19 patients and the possibility of long-lasting gustatory and olfactory dysfunction in the CNS

    Get PDF
    Gustatory (GD) and olfactory (OD) dysfunctions are the most frequent neurological manifestations of COVID-19. We used mental imagery as an experimental psychological paradigm to access olfactory and gustatory brain representations in 80 Italian COVID-19 adult patients (68.75% reported both OD and GD). COVID-19 patients with OD + GD have a significantly and selectively decreased vividness of odor and taste imagery, indicating that COVID-19 has an effect on their chemosensory mental representations. OD + GD length and type influenced the status of mental chemosensory representations. OD + GD were become all COVID-19 negative at the time of testing. Data suggest that patients are not explicitly aware of long-term altered chemosensory processing. However, differences emerge when their chemosensory function is implicitly assessed using self-ratings. Among patients developing OD + GD, self-ratings of chemosensory function (taste, flavor) were significantly lower as compared to those who did not. At the level of mental representation, such differences can be further detected, in terms of a reduced ability to mentally activate an odor or taste mental image. Our study shows that COVID-19 infection not only frequently causes hyposmia and dysgeusia, but that may also alter the mental representations responsible for olfactory and gustatory perception

    Effects of age and gender on neural correlates of emotion imagery

    Get PDF
    Mental imagery is part of people's own internal processing and plays an important role in everyday life, cognition and pathology. The neural network supporting mental imagery is bottom-up modulated by the imagery content. Here, we examined the complex associations of gender and age with the neural mechanisms underlying emotion imagery. We assessed the brain circuits involved in emotion mental imagery (vs. action imagery), controlled by a letter detection task on the same stimuli, chosen to ensure attention to the stimuli and to discourage imagery, in 91 men and women aged 14–65 years using fMRI. In women, compared with men, emotion imagery significantly increased activation within the right putamen, which is involved in emotional processing. Increasing age, significantly decreased mental imagery-related activation in the left insula and cingulate cortex, areas involved in awareness of ones' internal states, and it significantly decreased emotion verbs-related activation in the left putamen, which is part of the limbic system. This finding suggests a top-down mechanism by which gender and age, in interaction with bottom-up effect of type of stimulus, or directly, can modulate the brain mechanisms underlying mental imagery

    Pre- and Post-surgical Poor Seizure Control as Hallmark of Malignant Progression in Patients With Glioma?

    Get PDF
    BackgroundRegarding brain tumor-related epilepsy (BTRE), there is an increasing number of evidence about a relationship between epileptogenesis and oncogenesis. A recent study suggests a role of post-surgery seizure outcome on the survival of patients with low-grade glioma (LGG), underlying the need for a targeted and aggressive epilepsy treatment. ObjectiveThis study aims at investigating the possible correlation between pre- and post-surgical seizure control and tumor progression in patients who underwent surgery for LGG. MethodsWe performed a retrospective analysis of patients affected by LGGs and BTRE, in a single high-volume neurosurgical center. Seizure control was assessed before surgery and at 3 years of follow-up. Patients with histological progression in high-grade glioma (HGG) have been evaluated. Clinical features, pre-surgical electroencephalograms (EEGs), and electrocorticography (ECoG) have been analyzed. ResultsAmong 154 subjects, we collected 32 patients who presented a tumor progression in HGG during the follow-up period. The majority had poor seizure control both pre- and post-surgery, never being in Engel class Ia throughout the whole history of their disease. Almost all patients with poor seizure control had pathological ECoG recording. Clinical features of seizures did not correlate with seizure outcome. On the univariate analysis, the age, the post-operative Engel class, and the extent of resection (EOR) were the prognostic factors significantly associated with oncological outcome; nevertheless, on multivariate analysis, Engel class significance was not confirmed, and the only predicting factor were age and EOR. ConclusionsAlthough not confirmed on multivariate analysis, post-surgical seizure control could be a relevant factor to consider during follow-up of BRTE, in particular, when gross total resection is not achieved. Pathological findings on the ECoG may suggest a "hidden" propensity to malignant progression, strictly related to the persistent neuronal hyper-excitability. Further studies with longer follow-up period are needed to confirm our observations
    corecore